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Abstract

Scaling symmetry is observed in snow crystals as a
relation between hexagons inscribing and circumscribing
hexagonal star polygons. These patterns are revealed
by a characteristic distribution of clear spots (pores)
and of dark lines. The new symmetry demonstrates
the possible relevance of non-Euclidean (multimetrical)
crystallography for crystals in nature. The multimetrical
space group of the (ideal) ice structure is derived and
the morphology of snow crystals is interpreted on the
basis of the corresponding crystallographic point group
of infinite order. The morphological importance of a set
of basic structural sites, indexed according to points of
a macroscopic hexagonal lattice, is discussed. Rules are
formulated for the growth forms of snow crystals of the
dendritic and of the facet type.

1. Introduction

The sixfold symmetry one admires in snow crystals
moved Kepler to find an explanation of the six-cornered
snowflake in terms of an underlying microscopic struc-
ture. It was the year 1611. Kepler could associate a
hexagonal symmetry to a close packing of equal spheres
but as he could not account for the mainly planar
structure of snowflakes he did not published his work
as a scientific paper but as a Christmas gift Strena
Seu De Nive Sexangula dedicated ad illustrem sacrae
caesareae maliestatis consiliarium imperialem aulicum,
dominum loannem Matthaeum Wackherium at the court
of the Emperor Rudolf in Prague (Kepler, 1611). Despite
his impression of having failed, his contribution was
relevant and far ahead of his time. His work inspired
generations of investigators. Nowadays, one is aware of
the complexity of physical phenomena associated with
such a simple molecule as H,O, in water, in ice and in
snow (Ben-Jacob, 1993; Bernal & Fowler, 1933).

The title adopted from Kepler reflects the central idea
of the present contribution, which bases the symmetry
of snow crystals on the hexagonal star polygon (the
hexagram) instead of on the hexagon only. This is
the surprising result of an attempt to convince the
participants of the ACA meeting held in Atlanta in
1994 that there is only one crystallography, despite the

© 1997 International Union of Crystallography
Printed in Great Britain — all rights reserved

present paradoxical situation, where aperiodic crystals
are described in terms of higher-dimensional lattice-
periodic structures, where quasicrystals (which are dis-
crete) involve crystallographic scaling symmetries and
where non-Euclidean crystallography can be applied to
normal crystals (which are Euclidean objects) (Janner,
1995a).

It is easily understandable that a more comprehensive
crystallography, which takes all that into account, can be
considered as an interesting mathematical construction
(or at most a geometrical one) far from any physical
reality. Amazingly enough (as we hope to be able
to show), snow, ‘the beautiful snow’ as Bentley &
Humpbhreys (1931) write in their marvelous photographic
collection, reveals these new crystallographic aspects
at a macroscopic scale in a way compatible with the
microscopic structure of ice. In other words, the mor-
phology of snow crystals (in a two-dimensional approx-
imation) brings some evidence that non-Euclidean crys-
tallographic symmetries combined with the Euclidean
ones play a role in nature.

What will be presented here is the logical con-
sequence of previous developments. Conceptually,
hexagrammal symmetry has the same foundation as the
pentagrammal symmetry observed in the Fourier map of
the decagonal phase of Al,4Mn,, (Janner, 1992; Steurer,
1991) and in a high-resolution electron microscope
(HREM) picture of the icosahedral AIMn quasicrystal
phase, sent as New Year’s greetings for 1986 by the col-
leagues of the Center for High-Resolution Microscopy of
the University of Antwerpen (RUCA) (Janner, 1995a).
At the crystallographic level of a higher-dimensional de-
scription, the scale-rotational symmetry of a self-similar
pentagram is a point group generated by a fivefold cir-
cular rotation and a 7-related hyperbolic rotation [where
r=(1+5" 2)/2]. The circular rotation leaves the Eu-
clidean metric invariant, whereas the hyperbolic rotation
leaves invariant an indefinite metric. This justifies the
name multimetrical point group. The planar multimetri-
cal symmetry of a snow crystal appears to be generated
in an analogous way by a sixfold circular rotation and
by a 3'/-related hyperbolic rotation, both leaving the
hexagonal lattice invariant. This group is the point group
of a three-dimensional multimetrical space group leaving
the (ideal) structure of ice invariant, as discussed later.
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Table 1. Parameters and symmetry groups of ideal ice structures

Positions Parameters P63 /mmc
afc 1.6297
0 at4(f) 2 0.0625
Hl at 4(f) 2] 0.198
H; at 12(k) 2 0.0172
x 0.4545
L, has the matrix form
310
Lz(a) =121 0 (2)
0 0 1

The transformation L = {L,]0,0, 1} leaves the Wyck-

off positions 4(f) of P6,/mmc invariant. Invariance of
the 12(k) positions x, 2x, z,...,x, %, +— is ensured by
the condition 6x = Omod 1. The best approxnmanon to
the experimental value of x = 0.4545 is x = 1. As for ice,
the a/c ratio is very near to that of a hexagonal close-
packing lattice A, , we also consider the hyperbolic
rotations L and L, around the x and y axes, respectively,

which leave Ahc invariant:

1 8 16 49 —24 80
L@=[0 17 32|, L@=[0 1 0
0 9 17 30 —15 49

3)

One then finds that the 4(f) Wyckoff positions 1, %, z;
2 1 212 1253 § b
552+ 3 532 1,2,24 5 are left invariant by

L, ={L0,0,}} and by L = {L,|0,0,0} for the

dlscrete values of 16z = Omod 1. To see this, consider
for example the action of L | on the atomic position

;, 3,2, modulo the lattice translatlons

{L,10,0,1}(4.3.2) ~ (3 + 162, 1 +32z, 1 +172). (4)

Invariance requlrcs 16z = Omod 1, leading to the po-
sition (3, 1,z + 1). The O-atom positions satisfy this
condition as z, = 0.0625 = 1/16 and the first half of
the H atoms H, also, if one adopts the value z; = 3/16 =
0.1875 instead of the observed one of 0.198. Invariance
for the positions 12(k) of the second half of the H
atoms H,, assuming x = % as above because of L, also
implies 16z = Omod 1. A fairly good approximation of
the observed value z, = 0.0172 is z = 0. In this case, the
four H atoms are distributed among the 6(g) positions.
For keeping the 12(k) positions, one needs the less good
approximation of z = 1/16 = 0.0625. Adopting these
values for an ideal ice structure gives as symmetry the
multimetrical space group

Po3/mmcL ;  P63/mmcL ; LyL ,
2 7000
1.6297 1.633 = (8/3)!/2
00625 = 1/16  0.0625 = 1/16
0.198 0.1875 = 3/16
00172 0.0 or 0.0625
0.5 0.5
Gl - <Ahcp’ R-l oMy, my’ m, L L Lv’ Lxl >
2 2 2 2
= P6,/mmc L,LL,, (5)
42 2

whereas if for the idealized structure one only changes
the parameter x, of the H, positions to the value x, =
0.5, the symmetry is smaller and given by

G,= (4

hex’R 1,m, m) m 1,LZ%>

= P6;/mmcL ,.
2 22 2

(6)

If no idealization at all is made, the symmetry remains
the Euclidean one P6,/mmc. In Table 1, the parameters
are indicated leading to these symmetry groups (which
are in a group—subgroup relation). Note that all three
space groups are invariance groups for the O-atom
positions.

The first case P6,/mmc is disregarded because we
are looking for more than plain hexagonal symmetry.
The other two groups imply the same consequences for
the planar symmetry of snow crystals. It is, therefore,
sufficient to adopt the value x, 0.5 for the H,
posntlons This leads to P6 /mmcL l,whosc point group
is

K,=(R,L,m_,m,m) = 6(4)mmm, (7)
where (4) stands for the generator L, (which, as hyper-
bolic rotation in the plane, has trace 4 and this value fixes
by 2 cosh x = 4 the rotation angle x). The corresponding

two-dimensional point group is denoted by

K= (R Lm)=64m (8)

The challenge is now to recognize the effects of this non-
Euclidean point group in the (Euclidean) morphology of
planar snow crystals.

3.2. The point group 6(4)m

The two-dimensional point group K = 6(4)m is gen-
erated by three reflections:

<(1) %) mz(a)=(i (*1))
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where with respect to the previous notation m, =
m_ and the basis set a is here restricted to the two-
dimensional hexagonal one. The pair m,, m, generates
the Euclidean subgroup K, = 6m, as mym, = R. The
pair m,, m, generates the hyperbolic subgroup K, =
(4)m as mm, = L. The elements m,m; = P, and
m.m,m,m, = P, generate the parabolic subgroups K,
and sz, respectively:

Ky=(R,m) =6m, K, =(Lm)=(4)m,

K, =(RL), K,=(L"'R). (10)
As shown in Appendix A, the group of matrices K(a),
obtained by expressing the point group K = 6(4)m with
respect to the two-dimensional hexagonal lattice basis
a, is a subgroup of index four in the group GI(2,7)
of integral invertible two-dimensional matrices. A right
coset decomposition of GI(2,7Z) with respect to K is
given by

Gl(2,2)
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Important for analyzing the morphology of snow crystals
are sets of point-group-equivalent points, forming the
orbits of 6(4)m. The orbit of the origin consists of a
single point. All other orbits are infinite sets. In order
to get a better feeling of the structures involved, one
can consider typical orbits of points of the hexagonal
invariant lattice for few cyclic subgroups: elliptic (cir-
cular), hyperbolic and parabolic ones (Fig. 6). Once the
origin is chosen, the application of 6(4)m to a point with
rational coordinates generates a discrete set of points of a
two-dimensional lattice. The rationality is implied by the
process of crystallization, which ensures that this lattice,
attached to the crystal growth form and denoted here A ,
has the same orientation as the underlying microscopic
lattice A of symmetry translations, so that

Ay = AA (12)
for a suitable real factor A that relates microscopic
.to macroscopic features and can be taken as integral.
We assume accordingly that X(1,0) = Na; ~ Aa,.
All this excludes, in particular, orbits of points along
the asymptotes of the hyperbolic rotations appearing
in the point group. Furthermore, orbits only differing
by a scaling factor and/or by a rotation are considered
equivalent. Therefore, we can restrict the choice to

}@3
X

Fig. 6. Some typical orbits for cyclic subgroups of

the point group 6(4)m leaving the hexagonal lattice

invariant. (a) Elliptic subgroup (R}. (b) Hyperbolic
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subgroup (L). (c) and (d) Parabolic subgroups (P,)
and (P,), respectively.
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points X(a) = (n,,n,) = n,a, + n,a, with relatively
prime integral coordinates. These points form a single
orbit under the group GI(2, Z), which decomposes into
two orbits of the subgroup 6(4)m, obtained from the
points (1, 0) and (1, 1), respectively (Fig. 7). This follows
from the coset decomposition given above. As derived
in Appendix A, the points of these two orbits can be
obtained from the following selection rules among the
lattice points of A :

Ogapm(1,0) 3
& ged(mn)=1 and
(2m—n)=1mod3 or

(m, n)

(2m —n) =2mod 3
(13)
Ogaym(1,1) 3 (m,n)

< ged.(mn)=1 and (2m—n)=0mod3.

(14)

Of course, these two orbits are equivalent by a scale-
rotation transformation. The conclusion is that it is
sufficient to look at the orbit O, (1,0) of X(1,0) by
6(4)m, in addition to the trivial orbit of the origin.

It is interesting to look at the orbits of the par-
abolic subgroups, possibly responsible for the one-,
three- and four-branched crystal forms mentioned by
Nakaya (1954) (see also Frank, 1982), whereas the
sixfold conjugated parabolic subgroups would give rise
to the characteristic six-pointed stars, both as a growth
form and as line patterns radiating from the center. In
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Fig. 7. Hexagonal lattice and the orbit Og 2 z(1,0). The elements
of this orbit are lattice points (m,n) satisfying the condition
g.c.d.(m,n) = 1. This orbit splits into the two orbits Ogq)m(1.0)
and Oga)m(1, 1) for the subgroup 6(4)m with points indicated by
filled and empty circles, respectively. Only points lying in a circle
of radius 24 are shown.
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the case of K, the star branches (and the corresponding
lines) are through the vertices of a central hexagon,
whereas those oriented perpendicularly to the hexagonal
edges are due to being conjugated to the other parabolic
subgroup K , (Fig. 8a). If complementary regions are
considered, one gets a larger hexagon and the situation

(a)
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Fig. 8. (a) Orbits generated from the vertices of a central hexagon
by two sets of parabolic subgroups. Those conjugated by R* to
Kp, = (m3mymym,) for k = 1, ... 6 give rise to the points (filled
circles) of the radial patterns in the direction of the vertices of the
hexagon. The others, also sixfold conjugated but to K, = (mam3).,
produce the points (empty circles) of the patterns perpendicular
to the edges of the same hexagon. (b) The previous situation is
reversed if one considers the complementary internal regions. Only
the points lying in the same region as in Fig. 7 are shown.
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of its multiplicity, given by the number of Voronoi cells
at the vertex in question.

4. Growth forms and internal patterns of snowflakes

A characterization of the symmetry of snow crystals
involves two different aspects. The first aspect is repre-
sented by growth forms, mainly reflected in the external
shape of the crystal (which can be the result of more
than one growth form). The second aspect is what we
may call the internal macroscopic structure of patterns
of lines and dots (pores), of light and dark regions
(particularly evident in light transmission). The origin
of these patterns has been considered both by Bentley &
Humphreys and by Nakaya. Bentley & Humphreys say,
in particular: ‘... By far the greater number, however,
of these lines and dots on the snow crystal are due to
cavities, usually empty, but sometimes partially filled

.
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with water’. According to Nakaya, these patterns arise by
total reflection: ‘ To speak specifically about the patterns,
the narrow ditches and ridges on the surface appear in
black by total reflection’.

In our perspective, the patterns of both the growth
forms reflect the same multimetrical point-group sym-
metry of a not further specified potential. In partic-
ular, the symmetry-related potential maxima (avoided
by the crystallizing water molecule and by impurities)
appear as light regions, whereas the darker regions
arise from the complementary potential minima. One
has to be aware that, when applying non-Euclidean
transformations to a potential (which is a function in
the Euclidean space), symmetry-related points do not
have, in general, the same energy. This phenomenon is
well known in the case of Bragg spots in the diffraction
of a self-similar quasicrystal structure. The positions of
the Bragg peaks are invariant with respect to elements

Fig. 10. (a) Points of the orbit Og4ym(1,0) within a circle or radius
24. (b) Partition of this region in Voronoi cells. (c) Corresponding
orbit holes, which are the vertices of the Voronoi cells.
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Fig. 17. Interpretation of the morphology of the crystal BH 141.11
alrcady shown in Fig. 5. (a) Basic structural sites appearing as
light spots in the crystal are indicated in their hexagrammal scaling
rclation. Most spots appcar 1o be connected with the holes with
the largest multiplicity. A few, less pronounced, are at holes with
the lower multiplicity 4. Additional ones have multiplicity 5. ()
Interpretation of the pattern of dark lines in terms of lines connecting
orbit points. The light spots are also indicated for demonstrating
their perfect compatibility with the set of lines. Many details are here
included, in a somewhat stylized realization, which nevertheless
reproduces with the right size and at the right positions a great deal
of the complex patterns observed in this snowflake.
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The last and more complex example is the sample
BH 141.11 already shown in Fig. 5 because of the
explicit hexagonal star polygon appearing in it as a
pattern of black lines. The corresponding interpretation
is shown in Figs. 17(a) and (b). As one can see in this
case as well, most of the morphological features can
be interpreted on the basis of a single orbit. It is fair to
remark that, for the set of parallel double lines appearing
at the left and at the right of the hexagonal axes, the
agreement between model and internal pattern is not
always satisfactory.

4.3. Morphological rules

The morphological characterization of the seven
snowflake samples discussed in the previous two
subsections is summarized in Table 2.

It is certainly too early to formulate morphological
laws on the basis of the data analyzed so far. An
attempt is made here to formalize the observations by
a number of rules. These rules have a geometrical
character similar to that of Friedel’s law (Friedel, 1907)
and are not yet justified by physical processes like
the ones considered by several authors for modeling
dendritic growth (Ben-Jacob, 1993; Brener & Mel’nikov,
1991; Gonev & Kraus, 1994; Hurle, 1993; Kessler,
Koplik & Levine, 1988; Langer, 1980; Nittmann &
Stanley, 1987). In particular, the physical basis for
the morphological relevance of non-Euclidean symmetry
elements is totally missing.

Keeping this in mind, one can try to formulate some
morphological rules.

Rule 1. A crystal form is based on two orbits of the
multimetrical point group X of the crystal: the one-point
orbit 0, (0,0) of the origin and an infinite orbit O, (X)
of a second (macroscopic) singular point X. This point
can be assumed to be at an atomic position, point of the
microscopic lattice A of symmetry translations.

The orbit O,(X) consists of points of a macroscopic
lattice A, of the crystal form and is generated from a
point X(1,0) = Na, = (1,0), for N a large integer and a,
a basis vector of the microscopic lattice A. This orbit is
accordingly denoted by O,(1,0). The point (1, 0) fixes
the natural unit of length of the crystal form.

Rule 2. Morphologically relevant are only the orbit
points at a distance from the origin smaller than a given
T..x Telated to the coherence length. This distance is

typically of the order of 15 to 40 units.

Rule 3. A skeleton of the crystal form is defined
in terms of basic structural sites, which are at hole
positions of the orbit O,(1,0). These sites can be
indexed by rational numbers by considering the hole
positions with respect to A_,. The basic structural sites
have the Euclidean point-group symmetry K|,.
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Table 2. Crystal form characterization of snowflakes (Figs. 11 to 17)

Basic structural sites (modulo 6m)

Sample Form rmax  Fig. Multiplicity
SAl Dendritic 18 11 6
BH 188.12  Dendritic 18 12 6
4
BH 183.8 Dendritic 32 13 6
5
4
BH95.11 Facet 14 14 6
4 (11, 13)
SA2 Facet 18 15 6
4
BH 58.11 Facet 25 16 6
BH 141.11 Facet 21 17 6
5 (4, 20)
4 (12,0)

Rule 4. Crystals of the dendritic type arise for O (1, 0)
at maxima of a not further specified potential, whereas
an orbit of minima yields a crystal form of the facet
type. In the dendritic case, the basic structural sites are at
intersection points and at the end of dendritic branches.
In the facet-type case, these sites appear as internal dots
or pores. The internal line patterns can be modeled by
connecting a selection of orbit points.

Rule 5. The morphological importance of a basic
structural site increases with increasing hole multiplicity.

Rule 6. One can distinguish between homogeneous
and inhomogeneous crystal growth forms. The homo-
geneous forms are classified by a set of symmetry-
equivalent lattice planes. The inhomogeneous forms are
characterized by a set of symmetry-equivalent lattice
points.

Snow crystals of the dentritic and of the facet type are
examples of inhomogeneous growth forms, whereas the
columnar snow crystals (not considered in this paper)
are expected to have homogeneous growth forms.

These rules have an indicative value allowing, in a
number of cases, a symmetry interpretation to be given
of the morphology of snow crystals that goes beyond the
Euclidean point symmetry. No attempt has been made
to estimate for how many of the more than 2000 snow
crystals of the Bentley—Humphreys collection the present
approach is valid, but certainly for many more samples
than the few ones selected here.

5. Concluding remarks

The present approach explains, up to a certain degree,
the geometry of snow crystals but not, however, the
physics involved. The morphological interpretation of
all the snow crystals considered is based on the fit-
ting to the structure of two points only, the origin
and one orbit or hole point of always the same set
of admissible points. The deep meaning of the non-
Euclidean symmetries for a Euclidean object, which

Indices: (m, n) € HOgaym(1, 0)

(0,0) 4, 8) (8, 16) (10, 20) (8, 10) (12, 18)

(2, 4) (4, 8) (8, 16) (10, 20) (12, 18)

(3,0) (6,0) (12, 0)

(2,4) (4,8) (6, 12) (8, 16) (10, 20) (12, 24) (16, 32) (18, 36) (20, 22)
(14, 22) (20, 28)

(1,2) (6,0) (12, 0) (18, 0) (20, 34)

(0,0) (2,4) 4,8) 8, 16)

(0,0) (2,4) (4, 8) (8, 16) (10, 20) (14, 16)
(1,2) (11, 13)

0,0) (4, 8) (6, 12) (12, 24) (14, 28) (18, 24)
0,0) (2, 4) (4,8) (10, 20) (12, 24)

is to express relevant Euclidean properties not due to
Euclidean symmetries, gives the direction along which
an interplay with physical laws can occur. A preliminary
investigation has already demonstrated the possibility of
interpreting some accidental degeneracy in energy band-
structure calculations of crystals of the wurtzite structure
type, on the basis of a multimetrical space group leaving
the crystal structure invariant (Janner & Nusimovici,
1994).

The scaling properties observed in snow crystals are
similar to those derived for Wyckoff positions in multi-
metrical space groups (Janner, 1995a). The positions
for a given Wyckoff letter are not scaling invariant but
there are families of Wyckoff positions in mutual scaling
behavior. Here also, one orbit is not scaling invariant but
gives rise to holes belonging to different orbits that are
at mutually scaled positions.

APPENDIX A

The point group K = 6(4)m expressed with respect to
the hexagonal basis a, = (1,0) and a, = (—1/2, 3172/2)
is a subgroup of Gl(2,Z), the group of integral two-
dimensional matrices with determinant +1. The corre-
sponding proper subgroups are 6(4) and SI/(2,7) = T,
respectively. The modular group I is generated by
the two matrices [see Apostol (1976) and Schoeneberg

(1974) for details]:
1 1 0 1
T= (0 1) and S=<1 0),
R(a)=(} (‘)) and L(a)=(; }) (17)
B

whereas 6(4) is generated by
5) of I' with 3 = Omod?3

(16)

The set of matrices

forms a subgroup I'°(3) of index 4 in I', with coset
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decomposition

r= r"(3)[n+r+ T +s]. (18)

Proposition 1. The point group 6(4) = (R,L), ex-
pressed with respect to the basis ¢, = a,, ¢, = a, — a,
is I'(3).

Proof: The group I'°(3) is generated by T' = S~'TS
and V; = S7'V,$ with

/ 1 0 1 1

[See (Apostol, 1976, p. 79) using I},(3) = §~'I%(3)S.]
One then verifies the relations:

R(c) = TR(a)T~' = -V},

20
L(c) = TL(@)T™" = -vy(T")~". (20)

Corollary. The group 6(4) is isomorphic to a subgroup
of index 4 in I" and the group K = 6(4)m is isomorphic
to a subgroup of index 4 in GI(2, Z). When referred to
the hexagonal basis, K(a) has the coset decomposition:

Gl(2,7) = K(a) [11 +T+T 4771, 1)

The fundamental region of 6(4)/{x1}, considered as
the group of fractional linear transformations acting on
the extended upper half complex plane, is the union of
the fundamental region / of the modular group and the
corresponding images by T,T~' and T7'S (Fig. 18).
Proposition 2. The hexagonal lattice points (m, n)
of the two orbits Og, (1, 1) and O, (1,0) satisfy the

<>

-1.0 0.0 1.0

Fig. 18. Fundamental region (indicated by heavy lines) of the multi-
metrical hexagonal point group 6(4) acting as a group of fractional
linear transformations on the upper half complex plane. The fun-
damental region / of the modular group is indicated together with
the images of / obtained from the coset representatives 7, 7~ ! and
TS
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condition g.c.d.(m,n) = 1. The congruence 2m — n
0 mod 3 characterizes the points allowed for O, (1,
and forbidden for Oy, (1,0).

Proof: A point (m, n) of the hexagonal lattice (referred
to the basis a), when expressed in the basis ¢, yields:
(m,n) = (m+n,n)_. The image of (p, q)_ by an element
of I'(3) is:

0] 3[3) (p) _ (ap + 3ﬂq> _ (m + n) (22)

v b J\a), \w+bég ) ~\ n /
sothat m = (o — v)p+ (38 — b)g and n = vp + éq.
Accordingly, 2m—n = 2ap mod 3. The orbit of the point
(1,0) by I' splits into the orbit of (0,1)_ = (1, 1) and of
(1,0), = (1,0), respectively. In the first case, p = 0 so
that the congruence 2m — n = O mod 3 allows the points
for the first orbit and forbids those of the second orbit.

(1)
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