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Abstract 

Scaling symmetry is observed in snow crystals as a 
relation between hexagons inscribing and circumscribing 
hexagonal star polygons. These patterns are revealed 
by a characteristic distribution of clear spots (pores) 
and of dark lines. The new symmetry demonstrates 
the possible relevance of non-Euclidean (multimetrical) 
crystallography for crystals in nature. The multimetrical 
space group of the (ideal) ice structure is derived and 
the morphology of snow crystals is interpreted on the 
basis of the corresponding crystallographic point group 
of infinite order. The morphological importance of a set 
of basic structural sites, indexed according to points of 
a macroscopic hexagonal lattice, is discussed. Rules are 
formulated for the growth forms of snow crystals of the 
dendritic and of the facet type. 

I. Introduction 

The sixfold symmetry one admires in snow crystals 
moved Kepler to find an explanation of the six-cornered 
snowflake in terms of an underlying microscopic struc- 
ture. It was the year 1611. Kepler could associate a 
hexagonal symmetry to a close packing of equal spheres 
but as he could not account for the mainly planar 
structure of snowflakes he did not published his work 
as a scientific paper but as a Christmas gift Strena 
Seu De Nive Sexangula dedicated ad illustrem sacrae 
caesareae maiestatis consiliarium imperialem aulicum, 
dominum loannem Matthaeum Wackherium at the court 
of the Emperor Rudolf in Prague (Kepler, 1611). Despite 
his impression of having failed, his contribution was 
relevant and far ahead of his time. His work inspired 
generations of investigators. Nowadays, one is aware of 
the complexity of physical phenomena associated with 
such a simple molecule as H20, in water, in ice and in 
snow (Ben-Jacob, 1993; Bernal & Fowler, 1933). 

The title adopted from Kepler reflects the central idea 
of the present contribution, which bases the symmetry 
of snow crystals on the hexagonal star polygon (the 
hexagram) instead of on the hexagon only. This is 
the surprising result of an attempt to convince the 
participants of the ACA meeting held in Atlanta in 
1994 that there is only one crystallography, despite the 

present paradoxical situation, where aperiodic crystals 
are described in terms of higher-dimensional lattice- 
periodic structures, where quasicrystals (which are dis- 
crete) involve crystallographic scaling symmetries and 
where non-Euclidean crystallography can be applied to 
normal crystals (which are Euclidean objects) (Janner, 
1995a). 

It is easily understandable that a more comprehensive 
crystallography, which takes all that into account, can be 
considered as an interesting mathematical construction 
(or at most a geometrical one) far from any physical 
reality. Amazingly enough (as we hope to be able 
to show), snow, 'the beautiful snow' as Bentley & 
Humphreys (1931) write in their marvelous photographic 
collection, reveals these new crystallographic aspects 
at a macroscopic scale in a way compatible with the 
microscopic structure of ice. In other words, the mor- 
phology of snow crystals (in a two-dimensional approx- 
imation) brings some evidence that non-Euclidean crys- 
tallographic symmetries combined with the Euclidean 
ones play a role in nature. 

What will be presented here is the logical con- 
sequence of previous developments. Conceptually, 
hexagrammal symmetry has the same foundation as the 
pentagrammal symmetry observed in the Fourier map of 
the decagonal phase of A178Mn22 (Janner, 1992; Steurer, 
1991) and in a high-resolution electron microscope 
(HREM) picture of the icosahedral A1Mn quasicrystal 
phase, sent as New Year's greetings for 1986 by the col- 
leagues of the Center for High-Resolution Microscopy of 
the University of Antwerpen (RUCA) (Janner, 1995a). 
At the crystallographic level of a higher-dimensional de- 
scription, the scale-rotational symmetry of a self-similar 
pentagram is a point group generated by a fivefold cir- 
cular rotation and a r-related hyperbolic rotation [where 
"r = (1 + 5t/2)/2]. The circular rotation leaves the Eu- 
clidean metric invariant, whereas the hyperbolic rotation 
leaves invariant an indefinite metric. This justifies the 
name multimetrical point group. The planar multimetri- 
cal symmetry of a snow crystal appears to be generated 
in an analogous way by a sixfold circular rotation and 
by a 3~/2-related hyperbolic rotation, both leaving the 
hexagonal lattice invariant. This group is the point group 
of a three-dimensional multimetrical space group leaving 
the (ideal) structure of ice invariant, as discussed later. 
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2. Beyond the hexagonal point-group symmetry 
Behind the rich morphology of snow crystals, there 
are intriguing structural relations not explained by the 
hexagonal point group K 0 = 6/mmm of ice. The aim of 
this paper is to identify characteristics of these relations 
in patterns visible in snow crystals of different shapes. 
In this section, the approach is purely phenomenolog- 
ical, even if the starting motivation for searching well 
defined patterns had been an abstract theoretical one, as 
explained in the Introduction. 

Let us consider representatives of the two main mor- 
phological snowflake types: with facets and with den- 
drites, respectively. The third type with hexagonal pris- 
matic columns is not considered here because of the 
planar approximation adopted. This is a very rough 
subdivision, a finer classification has been given by 
Nakaya (1954). A picture of the first two samples has 
been published in the Scientific American of 1961 in an 
article by Mason (1961). The first crystal has a star- 
like dendritic form, the second one, like a flower, is of 
the facet type and has branches in sector form. In the 
first case (sample SA 1, where SA denotes the source 
Scientific American, whose permission to reproduce is 
gratefully acknowledged), the structural relation between 
two scaled hexagons appears when considering a hexag- 
onal star polygon with vertices at the branching points 
of the dendrites (Fig. 1). In the second case (SA2), 
two morphological elements are considered separately: 
black lines (Fig. 2) and light spots (Fig. 3). Again 

and again, one observes hexagons in vertex-vertex or 
vertex-mid-edge relation with hexagonal star polygons. 
These pictures, which suggest a scaling symmetry in 

Fig. 2. Facet flower-like snow crystal (SA 2). The dark-line pattern of 
the external growth form shows a hexagrammal relation similar to 
that of Fig. 1 with an internal black hexagon. Another hexagonal 
star polygon of about the same size, but turned by 30 ° with respect 
to the black hexagon is also visible, somewhat in the background. 
(Courtesy of Scientific American.) 

Fig. 1. Dendritic star-like snow crystal (SA 1) with branching points 
belonging to a hexagonal star polygon and arranged according to 
two scaled hexagons with the same orientation. The larger one 
circumscribes the hexagram, the smaller one is inscribed in it. In the 
real crystal, small deviations are observed from the ideal structural 
relations indicated here. (Courtesy of Scientific American.) 

Fig. 3. Same crystal as in Fig. 2. The structural relations shown 
are among light spot-like regions. In addition to the hexagrammal 
vertex-mid-edge relation of two scaled hexagons, there is an 
additional hexagon in vertex-vertex relation. (Courtesy of Scientific 
American.) 
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addition to the hexagonal one, were presented at the 
Atlanta meeting (Gonev & Kraus, 1994). 

To show that what has been described is not ac- 
cidental, a third sample is presented, taken from the 
well known book by Bentley & Humphreys (1931) and 
denoted as BH 95.11. (The notation BH 95.11 indicates 
the 1 lth snow crystal from the top on page 95 of the 

Fig. 4. Snow crystal of the facet type (BH 95.11) with a set of light 
spots arranged according to three scaled hexagons in hexagrammal 
scaling relation. (Courtesy of Dover.) 

::~i I [ 

Fig. 5. Snow crystal (BH 141.11) with a central pattern of dark lines 
forming a hexagonal star polygon. (Courtesy of Dover.) 

book. This picture is reproduced, and the other ones 
which follow, by courtesy of Dover.) It is a snow crystal 
with light spots easily identified. A set of them forms 
a sequence of three scaled hexagonal star polygons in 
vertex-vertex relation with the corresponding hexagons 
(Fig. 4). A fourth snowflake is presented here because 
it shows dark lines drawing a hexagonal star polygon in 
a vertex-mid-edge relation with a hexagon (Fig. 5). All 
these snow crystals, together with a few more samples 
taken from Bentley & Humphreys, will be analyzed later. 

3. A multimetrical crystallographic approach 
The pentagrammal scale-rotational symmetry observed 
in decagonal quasicrystals can be expressed by crys- 
tallographic point-group transformations represented by 
four-dimensional integral invertible matrices. This is 
not the case for the scale-rotational hexagrammal sym- 
metries, even if one can derive them from a set of 
scaled hexagonal lattices, because the corresponding 
symmetry transformations are not unimodular. It is, 
however, not the end of the story. As already recog- 
nized in another context, a hexagonal lattice also has 
non-Euclidean crystallographic point-group symmetries, 
which are discrete hyperbolic rotations (Janner, 1991b). 
Furthermore, crystals occurring in nature can be in- 
variant (in the point-atom approximation) with respect 
to multimetrical space groups (Janner, 1991a; Janner, 
1995b). Let us, therefore, consider whether one can 
assign such a symmetry group to the structure of ice 
and then try to associate the corresponding multimetrical 
point group to the macroscopic growth forms of snow 
crystals. 

3.1. The multimetrical symmetry of ice 

The space group of ice is P63/mmc. One finds the O 
atoms on the 4 ( f )  Wyckoff positions. According to the 
Pauling model (Pauling, 1935) and a neutron diffraction 
study of heavy ice (Peterson & Levy, 1957), half of the 
H atoms (Hi) are also on 4( f )  and half (H 2) on the 
12(k) positions. 

A multimetrical extension of the Euclidean space 
group requires, in general, an idealization of the structure 
because the enlarged symmetry only applies to a point- 
atom approximation and this implies for the real crystal 
the possibility of a symmetry-breaking deformation. 
The ideal structure should, therefore, be related to a 
substantial increase of symmetry with respect to that 
of the real crystal. In the present case, the simplest 
extension of the Euclidean symmetry is represented by a 
hyperbolic rotation L z around the hexagonal axis, leaving 
the lattice invariant. With respect to the lattice basis 

a - -  {al,a2, a3}: 

a l - - a ( 1 , 0 , 0  ), a2 -- a(--1/2,  31/2 /2, 0), 

a 3 -- c(0, 0, 1), (1) 
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Table 1. Parameters and symmetry groups o f  ideal ice structures 

Posit ions Parameters  P63/mmc P63/mmcL ½ P63/mmcLz½ LyLxl 

a/c 1.6297 1.6297 1.633 = (8 /3 )  1/2 
O at 4 ( f )  zo 0.0625 0.0625 = 1 /16  0.0625 = 1 /16  
Hi at 4 ( f )  zl 0.198 0.198 0.1875 = 3 / 1 6  
H2 at 12(k) z2 0.0172 0.0172 0.0 or 0.0625 

x2 0.4545 0.5 0.5 

L: has the matrix form 

Lz(a )__ = 1 o 

0 
(2) 

i The transformation L z ½ = { L z I 0, 0, ~ } leaves the Wyck- 

off positions 4 ( f )  of P63/mmc invariant. Invariance of 
i is ensured by the 12(k) positions x, 2x, z . . . .  , x, g, Z + 

the condition 6x = 0 mod 1. The best approximation to 
i the experimental value of x = 0.4545 is x = ~. As for ice, 

the a/c  ratio is very near to that of a hexagonal close- 
packing lattice Ant p, we also consider the hyperbolic 
rotations L x and Ly around the x and y axes, respectively, 
which leave Ahc o invariant: 

(i8,6) (49 80) 
Lx(a)= 17 32 , Ly(a)--  1 0 . 

9 17 \ 3 0  - 1 5  49 
(3) 

I 2 One then finds that the 4 ( f )  Wyckoff positions .g, 7, z; 
2 1 I 2 1 {,  1 2 1 3, 3 , z + 7 ;  3,3,  5 ,5 ,  ~ + i  are left invariant by 
L½ = {L~IO, 0,~} and by Ly = {Ly l0 ,0 ,0  } for the 

discrete values of 16z = 0 mod 1. To see this, consider 
for example the action of L i on the atomic position 

xi 
i 2 3, 3, z, modulo the lattice translations: 

I 1 2 z) --~ (2 + 16z, g +32z ,  7 + 17z). (4) (L~I0,0, ½}(k, ~, 

Invariance requires 16z = 0 mod 1, leading to the po- 
sition (~, l ,  z + ±)2 • The O-atom positions satisfy this 
condition as z o = 0.0625 = 1/16 and the first half of 
the H atoms H ! also, if one adopts the value z I = 3/16 = 
0.1875 instead of the observed one of 0.198. Invariance 
for the positions 12(k) of the second half of the H 

l atoms H 2, assuming x = ~ as above because of L z, also 
implies 16z -- 0 mod 1. A fairly good approximation of 
the observed value z 2 = 0.0172 is z = 0. In this case, the 
four H atoms are distributed among the 6(g) positions. 
For keeping the 12(k) positions, one needs the less good 
approximation of z = 1/16 = 0.0625. Adopting these 
values for an ideal ice structure gives as symmetry the 
multimetrical space group 

GI = < Ahcp'R ' ' m x ' m  'm Y Z~ z 1' Lv' E l >  

= P63 /mmcLlL , ,L  l, z~ : x~ (5) 

whereas if for the idealized structure one only changes 
the parameter x: of the H 2 positions to the value x 2 --- 
0.5, the symmetry is smaller and given by 

G2 = (Ahex'R z~l'mx'my 'm  :-~"L:-~) = P63/mmcL- z~'" 

(6) 

If no idealization at all is made, the symmetry remains 
the Euclidean one P63/mmc. In Table 1, the parameters 
are indicated leading to these symmetry groups (which 
are in a group-subgroup relation). Note that all three 
space groups are invariance groups for the O-atom 
positions. 

The first case P63/mmc is disregarded because we 
are looking for more than plain hexagonal symmetry. 
The other two groups imply the same consequences for 
the planar symmetry of snow crystals. It is, therefore, 
sufficient to adopt the value x 2 = 0.5 for the H 2 
positions. This leads to P63/mmc L ±, whose point group 
is -2 

K 2 -- (Rz, Lz, mx, my, mz) = 6(4)mmm, (7) 

where (4) stands for the generator L z (which, as hyper- 
bolic rotation in the plane, has trace 4 and this value fixes 
by 2 cosh X = 4 the rotation angle X). The corresponding 
two-dimensional point group is denoted by 

K =  (g,L, my) = 6(4)m. (8) 

The challenge is now to recognize the effects of this non- 
Euclidean point group in the (Euclidean) morphology of 
planar snow crystals. 

3.2. The point group 6(4)m 

The two-dimensional point group K = 6(4)m is gen- 
erated by three reflections: 

o) 
i , (o (, m,(a)-  i '  m2(a)= 1 

m3 a) 0) 
i ' 

(9) 
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where with respect to the previous notation m~ = 
m,. and the basis set a is here restricted to the two- 
dimensional hexagonal one. The pair m~, m 2 generates 
the Euclidean subgroup K 0 = 6m, as m2m 1 = R. The 
pair m I, m 3 generates the hyperbolic subgroup Kh = 
(4)m as m~m 3 = L. The elements m2m 3 = P~ and 
m3m~m2m~ = P2 generate the parabolic subgroups Kpl 
and Kp2, respectively: 

K o =  ( R , m ~ ) - - 6 m ,  K h =  (L ,m, )  = (4)m, 

Kp, = (RL), Kp2 = (L - lR ) .  (10) 

As shown in Appendix A, the group of matrices K(a), 
obtained by expressing the point group K -- 6(4)m with 
respect to the two-dimensional hexagonal lattice basis 
a, is a subgroup of index four in the group Gl(2, 7/) 
of integral invertible two-dimensional matrices. A right 
coset decomposition of Gl(2, 7/) with respect to K is 
given by 

GI(2, 7/) 

o)+/o el)+ (1 
(11) 

Important for analyzing the morphology of snow crystals 
are sets of point-group-equivalent points, forming the 
orbits of 6(4)m. The orbit of the origin consists of a 
single point. All other orbits are infinite sets. In order 
to get a better feeling of the structures involved, one 
can consider typical orbits of points of the hexagonal 
invariant lattice for few cyclic subgroups: el!iptic (cir- 
cular), hyperbolic and parabolic ones (Fig. 6). Once the 
origin is chosen, the application of 6(4)m to a point with 
rational coordinates generates a discrete set of points of a 
two-dimensional lattice. The rationality is implied by the 
process of crystallization, which ensures that this lattice, 
attached to the crystal growth form and denoted here Acf, 
has the same orientation as the underlying microscopic 
lattice A of symmetry translations, so that 

Acf = AA (12) 

for a suitable real factor A that relates microscopic 
,to macroscopic features and can be taken as integral. 
We assume accordingly that X(1,0) = Na~ "~ Aa~. 
All this excludes, in particular, orbits of points along 
the asymptotes of the hyperbolic rotations appearing 
in the point group. Furthermore, orbits only differing 
by a scaling factor and/or by a rotation are considered 
equivalent. Therefore, we can restrict the choice to 

- T S \ \  \ V-~ \ \ \ \ \ ~  

, \ \ \ \ \ \ \  

..... 

(a) 

(c) 

\ \ \ \ \ \ \ ' ~ , , \ \  

\ \ 2 ~ \ \ \ \ \ \ \ ~ N ~ \ \  \ 
' , ~ \ \ \ \ \ \ \ \ N X \  ~ \ \ \ \ \ \ \ \ \ \ ~ \ \  

(b) 

\ , \  \ \ \  \ 

Fig. 6. Some typical orbits for cyclic subgroups of 
the point group 6(4)m leaving the hexagonal lattice 
invariant. (a) Elliptic subgroup (R). (b) Hyperbolic 
subgroup (L). (c) and (d) Parabolic subgroups (PI) 
and (P2), respectively. 



points X(a) --- (nl,n2) = nla ~ + n2a 2 with relatively 
prime integral coordinates. These points form a single 
orbit under the group Gl(2, Z), which decomposes into 
two orbits of the subgroup 6(4)m, obtained from the 
points (1, 0) and (1, 1), respectively (Fig. 7). This follows 
from the coset decomposition given above. As derived 
in Appendix A, the points of these two orbits can be 
obtained from the following selection rules among the 
lattice points of Acf: 

O6<4)m(1,0 ) ~ (re, n) 

¢¢, g.c.d.(m, n) -- 1 and 

( 2 m - n ) - - -  l m o d 3  or 

O6(4),,(i, 1) ~ (re, n) 
¢V g.c.d.(m, n) --- 1 and 

(2m - n) - 2 mod 3 

(13) 

(2m - n) -- 0 mod 3. 

(14) 

(a) 

Of course, these two orbits are equivalent by a scale- 
rotation transformation. The conclusion is that it is 
sufficient to look at the orbit 06(4)m(1, 0) of X(1,0) by 
6(4)m, in addition to the trivial orbit of the origin. 

It is interesting to look at the orbits of the par- 
abolic subgroups, possibly responsible for the one-, 
three- and four-branched crystal forms mentioned by 
Nakaya (1954) (see also Frank, 1982), whereas the 
sixfold conjugated parabolic subgroups would give rise 
to the characteristic six-pointed stars, both as a growth 
form and as line patterns radiating from the center. In 
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Fig. 7. Hexagonal lattice and the orbit Oct(2,z)(l, 0). The elements 
of this orbit are lattice points (m,n) satisfying the condition 
g.c.d.(m, n) -- I. This orbit splits into the two orbits O6(4)m(1,0) 
and 06(4)m(I, 1) for the subgroup 6(4)m with points indicated by 
filled and empty circles, respectively. Only points lying in a circle 
of radius 24 are shown. 

the case of Kpl, the star branches (and the corresponding 
lines) are through the vertices of a central hexagon, 
whereas those oriented perpendicularly to the hexagonal 
edges are due to being conjugated to the other parabolic 
subgroup Kp2 (Fig. 8a). If complementary regions are 
considered, one gets a larger hexagon and the situation 
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° +oo o oo° o o o  

o o o o 

o o  o o  o o o o o o  o o  

°o o ° o o o o o o °o o ° 

~ o ° o o  ° o 

o o o o o o o o o ¢ o o o o o 

o o o o o o c o o ~ o o o o o 

o o 

o o 

(b) 

Fig. 8. (a) Orbits generated from the vertices of a central hexagon 
by two sets of parabolic subgroups. Those conjugated by R k to 
Kp2 = (m3mlm2ml) for k -- 1 . . . . .  6 give rise to the points (filled 
circles) of the radial patterns in the direction of the vertices of the 
hexagon. The others, also sixfold conjugated but to K m = (mzm3), 
produce the points (empty circles) of the patterns perpendicular 
to the edges of the same hexagon. (b) The previous situation is 
reversed if one considers the complementary internal regions. Only 
the points lying in the same region as in Fig. 7 are shown. 
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is reversed (Fig. 8b). Examples of both cases are the 
sample BH150.4 (Fig. 9a) and BH151.11 (Fig. 9b), 
respectively. The orbits of both classes of conjugated 
parabolic subgroups together would explain the rarer 
case of the 12-branched type [see the cover picture 
of the Handbook of Crystal Growth (Hurle, 1993)]. If 
this is the case, one can understand why dodecagonal 
snow crystals are possible but exceptional. Apparently, 
these various subgroup orbits occur more frequently 
by the formation of internal patterns (black and white 
corresponding to complementary situations) observed in 

many snow crystal samples (Fig. 9c). The existence of 
morphologically relevant complementary regions sug- 
gests, in addition to the points of the orbit  O6(4)m(1, 0) 
(Fig. 10a), consideration of the Voronoi cells (Fig. 10b) 
and the holes (Fig. 10c), which are the vertices of the 
Voronoi cells (Conway & Sloane, 1988) of the set of 
orbit points. These holes, forming the set H06(4) m (1, 0),  
can be indexed by rational numbers (p, q) representing 
the position of the hole with respect to the crystal-form 
lattice Ace. The local surrounding of a hole by orbit 
points is also relevant and is here expressed in terms 

(a) (b) 

(c) 

Fig. 9. (a) Six-star crystal (BH 150.4) with branches starting from 
the vertices of a central hexagon. (b) Another six-star crystal 
(BH 151.11) with branches starting at the mid-edge positions of the 
hexagon. (c) Snow crystal of the facet type (BH 31.11) with both 
sets of branches revealed by a pattern of dark (and light) internal 
lines. (Courtesy of Dover.) 
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of its multiplicity, given by the number of Voronoi cells 
at the vertex in question. 

4. Growth forms and internal patterns of snowflakes 

A characterization of the symmetry of snow crystals 
involves two different aspects. The first aspect is repre- 
sented by growth forms, mainly reflected in the external 
shape of the crystal (which can be the result of more 
than one growth form). The second aspect is what we 
may call the internal macroscopic structure of patterns 
of lines and dots (pores), of light and dark regions 
(particularly evident in light transmission). The origin 
of these patterns has been considered both by Bentley & 
Humphreys and by Nakaya. Bentley & Humphreys say, 
in particular: ' . . .  By far the greater number, however, 
of these lines and dots on the snow crystal are due to 
cavities, usually empty, but sometimes partially filled 

with water'. According to Nakaya, these patterns arise by 
total reflection: ' To speak specifically about the patterns, 
the narrow ditches and ridges on the surface appear in 
black by total reflection'. 

In our perspective, the patterns of both the growth 
forms reflect the same multimetrical point-group sym- 
metry of a not further specified potential. In partic- 
ular, the symmetry-related potential maxima (avoided 
by the crystallizing water molecule and by impurities) 
appear as light regions, whereas the darker regions 
arise from the complementary potential minima. One 
has to be aware that, when applying non-Euclidean 
transformations to a potential (which is a function in 
the Euclidean space), symmetry-related points do not 
have, in general, the same energy. This phenomenon is 
well known in the case of Bragg spots in the diffraction 
of a self-similar quasicrystal structure. The positions of 
the Bragg peaks are invariant with respect to elements 
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Fig. 10. (a) Points of the orbit O6(4)m(1, 0) within a circle or radius 
24. (b) Partition of this region in Voronoi cells. (c) Corresponding 
orbit holes, which are the vertices of the Voronoi cells. 
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of a scale-rotational point group. Scaling-related peaks 
need not have the same intensity but Bragg spots are 
mapped into Bragg spots, thus maxima into maxima. 
The idea that symmetry-related points share the same 
extremal character is a working hypothesis to be tested 
in subsequent work. Our present aim is a limited one: to 
show a geometrical compatibility between orbits, growth 
forms and internal patterns, dark and light, respectively, 
in the spirit of the empirical observations reported in §2. 

4.1. Snowflakes of the dendritic type 

Let us first try to interpret the structural relations of 
the sample SA 1 presented in Fig. 1. The growth is 

mainly radial but no two orbit points can occur along 
a given radial direction. Therefore, in this case, the 
orbit points have to be associated with potential maxima 
and the boundaries of the growth form, whereas holes 
represent minima of the potential along which the growth 
is faster, which is a general feature for this type of 
snowflake. The specific form of the sample considered 
(Fig. 1 la) can be characterized by a star-like skeleton 
with branching at the dendritic branching points. Fig. 
11 (b) shows this skeleton in terms of a number of orbit 
holes, which represent basic structural sites. The indices 
of the basic structural sites for this snowflake are: 

(0,0) ( 4 , 8 ) ( 8 , 1 6 ) ( 1 0 , 2 0 ) ( 8 , 1 0 ) ( 1 2 , 1 8 )  (15) 
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Fig. 11. Interpretation of the morphology of the dendritic crystal SA 1. 
(a) The crystal. (Courtesy of Scientific American.) (b) Its idealized 
skeleton in terms of basic structural sites (empty circles) at holes 
of maximal multiplicity of the orbit points (grey filled circles). One 
finds the same hexagrammal structural relations as indicated in Fig. 
1. (c) The boundary of the dendrites are obtained by connecting 
orbit points, here indicated by empty circles. 
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together with their transformed ones by the hexagonal  
point group 6m. With this assignment,  the empirical 
structural relations indicated in Fig. 1 are interpreted in 
terms of  high-multiplicity holes of  HO6(4)m(l, 0) (Fig. 
1 l b). The orbit points around the skeleton then define, 
as expected but in a somewhat  schematic way,  the 
boundaries of the dendrites (Fig. l lc). In this case, 
the morphological  form is characterized by the rational 

indices of points of  a direct lattice and not by the 
rational indices of  lattice planes attached to points of  the 
reciprocal lattice, as is usually the case for non-dendritic 
crystals. 

In order to verify that the description given does not 
represent a single case, two other dendritic snowflakes 
taken from Bentley & Humphreys  are analyzed in the 
same way (BH 188.12 and BH 183.8). Considered are 
orbit points, orbit holes and basic structural sites having 
rational indices and defining a crystal form skeleton 
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(b) 
Fig. 12. Morphological relations in the dendritic sample BH 188.12. 

(a) The crystal. (Courtesy of Dover.) (b) The basic structural 
sites (black filled circles) at holes of the orbit points (empty 
circles) forming the skeleton. The crystal boundaries are drawn 
by connecting orbit points. The hexagrammal scaling relations are 
evident. Some small dendritic branches have not been included for 
clarity but they would also fit the same description. 
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Fig. 13. (a) The snow crystal BH 183.8. (Courtesy of Dover.) (b) The 
dendritic skeleton given in terms of basic structural sites (black 
filled circles) at hole positions. 
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(Figs. 12 and 13). One finds again and again scaled 
hexagons in hexagrammal relation. In the first case 
(SA 1), there are two hexagons in vertex-vertex ar- 
rangement. In the last two samples, one distinguishes 
at least three hexagons in vertex-mid-edge relation with 
the corresponding hexagonal star polygons. Looking at 
these examples, one becomes aware that holes with high 
multiplicity seem to be morphologically more important 
than holes with low multiplicity. 

4.2. Snowflakes of the facet type 
Empirically, we have already found that snow crystals 

of the facet type have clear spots giving rise to analogous 
structural relations as the branching points of dendritic 
crystals. It is, therefore, natural to assume that in the 
facet-type snowflakes the orbit points are at potential 

minima, whereas the holes are at potential maxima. This 
would explain that impurities responsible for the internal 
dark lines avoid the hole positions. The clear spots now 
define the positions of the basic structural sites and the 
black lines have to be associated with lines connecting 
orbit points. 

Starting with the sample BH 95.11 (Fig. 14a) already 
considered in Fig. 4, one is indeed able to assign to 
holes with sixfold multiplicity the light spots giving 
rise to three hexagonal star polygons: the largest one in 
vertex-vertex relation and the other two in vertex-mid- 
edge position with the set of scaled hexagons in which 
they are inscribed (Fig. 14b). At the same time, lines 
connecting orbit points allow reproduction, in a simpli- 
fied but clear way, of the pattern of dark lines (Fig. 
14c). From this, one sees that additional light spots, 
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Fig. 14. (a) The snow crystal of facet type BH 95.11. (Courtesy 
of Dover.) (b) Interpretation of the light spots in terms of basic 
structural sites at hole positions. The corresponding skeleton gives 
rise to the set of scaled star hexagons already indicated in Fig. 
4. A few more sites, clearly visible in the crystal, have also been 
included. (c) Interpretation of the internal dark lines, here obtained 
by connecting orbit points around the basic structural sites. 
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corresponding to holes with multiplicity 4, have to be 
included in the set of basic sites. Most significant is the 
agreement between the light and the dark patterns, and 
the fact that it is sufficient to fit the external boundaries 
for getting the internal structures at the right scale. In 
addition, this analysis reveals more structural relations 
than the few ones derived empirically in Fig. 4. 

The sample SA 2 (shown in Fig. 15a), which was the 
starting point of this whole investigation, has essentially 
the same flower-like shape as the previous BH 95.11 one, 
but with a more elaborated internal structure. Even in 
this case, it is not difficult to identify in the snowflake 

the set of basic structural sites (Fig. 15b) in terms of 
holes of the orbit points and of corresponding light spots. 
What is even more important is that, by drawing lines 
between points of the given orbit (Fig. 15c), one gets 
many more structural relations than one would dare to 
ascribe to a single orbit of the multimetrical point group. 
In addition, the scaling relations empirically expressed 
for the dark-line patterns in Fig. 2 are interpreted at 
the same time as those among the clear spots indicated 
in Fig. 3. Again, more points appear to be at basic 
structural sites, the original set being that of the holes 
with the largest multiplicity, morphologically the more 
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Fig. 15. (a) The same crystal SA 2 as shown in Figs. 2 and 3. (Courtesy 
of Scientific American.) (b) The set of light spots considered in Fig. 
3 can be associated with holes of orbit points, in a way similar to 
that indicated in Fig. 14, with most of the spots at hexagonal holes 
and a few on rectangular holes of multiplicity 6 and 4, respectively. 
The hexagrammal structure indicated in Fig. 3 is here completed 
by additional relations among light spots, now visible, leading to 
an overall flower-like structure (indicated by dashed lines). (c) 
Identification of the rich pattern of internal dark lines. 
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important ones. One might object to a certain degree of  
arbitrariness in the identification of  the orbit points to be 
connected for yielding the desired pattern of  dark lines. 
This is, however,  intrinsically required by the incredible 
variation in snowflakes, once their morphology is based 
on the geometry of  the symmetry  point group and on 
two singular points only: the origin (0, 0) and the orbit 
starting point, say (1, 0). 

The third sample of  the faced type considered 
(BH 58.11) is a variation of  the previous crystal form 
and this is why it is an interesting case (Fig. 16a). 
The interpretation of its morphological  features can be 
performed along the same principles. The result is shown 
in Figs.16(b), (c) and (d). The basic structural sites 
more easily identified are all holes with the maximal  
multiplicity six. 
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(c) (d) 
Fig. i6. (a) The flower-like snow crystal of the facet type BH 58.11. (Courtesy of Dover.) (b) Simplified pattern of the observed morphology in 

terms of orbit points. (c) Complex skeleton structure of the basic structural sites appearing in the crystal as light spots. (d) A more complete 
set of dark lines than the one given in (b), interpreting a type of pattern observed in many other snowflakes. 
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o o 

(a) 

(b) 

Fig. 17. Interpretation of the morphology of the crystal BH 141.11 
already shown in Fig. 5. (a) Basic structural sites appearing as 
light spots in the crystal are indicated in their hexagrammal scaling 
relation. Most spots appear to be connected with the holes with 
the largest multiplicity. A few, less pronounced, are at holes with 
the lower multiplicity 4. Additional ones have multiplicity 5. (b) 
Interpretation of the pattern of dark lines in terms of lines connecting 
orbit points. The light spots are also indicated for demonstrating 
their perfect compatibility with the set of lines. Many details are here 
included, in a somewhat stylized realization, which nevertheless 
reproduces with the right size and at the right positions a great deal 
of the complex patterns observed in this snowflake. 

The last and more complex example is the sample 
BH 141.11 already shown in Fig. 5 because of the 
explicit hexagonal star polygon appearing in it as a 
pattern of black lines. The corresponding interpretation 
is shown in Figs. 17(a) and (b). As one can see in this 
case as well, most of the morphological features can 
be interpreted on the basis of a single orbit. It is fair to 
remark that, for the set of parallel double lines appearing 
at the left and at the right of the hexagonal axes, the 
agreement between model and internal pattern is not 
always satisfactory. 

4.3. Morphological rules 
The morphological characterization of the seven 

snowflake samples discussed in the previous two 
subsections is summarized in Table 2. 

It is certainly too early to formulate morphological 
laws on the basis of the data analyzed so far. An 
attempt is made here to formalize the observations by 
a number of rules. These rules have a geometrical 
character similar to that of Friedel's law (Friedel, 1907) 
and are not yet justified by physical processes like 
the ones considered by several authors for modeling 
dendritic growth (Ben-Jacob, 1993; Brener & Mel'nikov, 
1991; Gonev & Kraus, 1994; Hurle, 1993; Kessler, 
Koplik & Levine, 1988; Langer, 1980; Nittmann & 
Stanley, 1987). In particular, the physical basis for 
the morphological relevance of non-Euclidean symmetry 
elements is totally missing. 

Keeping this in mind, one can try to formulate some 
morphological rules. 

Rule 1. A crystal form is based on two orbits of the 
multimetrical point group K of the crystal: the one-point 
orbit OK(0, 0) of the origin and an infinite orbit OK(X ) 
of a second (macroscopic) singular point X. This point 
can be assumed to be at an atomic position, point of the 
microscopic lattice A of symmetry translations. 

The orbit OK(X ) consists of points of a macroscopic 
lattice Act of the crystal form and is generated from a 
point X( 1, 0) -- Na I - (1,0),  for N a large integer and a l 
a basis vector of the microscopic lattice A. This orbit is 
accordingly denoted by OK(l, 0). The point (1, 0) fixes 
the natural unit of length of the crystal form. 

Rule 2. Morphologically relevant are only the orbit 
points at a distance from the origin smaller than a given 
rma x related to the coherence length. This distance is 
typically of the order of 15 to 40 units. 

Rule 3. A skeleton of the crystal form is defined 
in terms of basic structural sites, which are at hole 
positions of the orbit OK(l ,0  ). These sites can be 
indexed by rational numbers by considering the hole 
positions with respect to Act. The basic structural sites 
have the Euclidean point-group symmetry K 0. 
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Table 2. Crystal form characterization of snowflakes (Figs. 11 to 17) 

Basic structural sites (modulo 6m) 

Sample Form rmax Fig. Multiplicity Indices: (m, n) E HO6(4)m(I, O) 

SA 1 Dendritic 18 11 6 (0, 0) (4, 8) (8, 16) (10, 20) (8, 10) (12, 18) 
BH 188.12 Dendritic 18 12 6 (2, 4) (4, 8) (8, 16) (10, 20) (12, 18) 

4 (3,0) (6,0) (12,0) 
BH 183.8 Dendritic 32 13 6 (2, 4) (4, 8) (6, 12) (8, 16) (10, 20) (12, 24) (16, 32) (18, 36) (20, 22) 

5 (14, 22) (20, 28) 
4 (1, 2) (6, 0) (12, 0) (18, 0) (20, 34) 

BH 95.11 Facet 14 14 6 (0, 0) (2, 4) (4, 8) (8, 16) 
4 (11, 13) 

SA 2 Facet 18 15 6 (0, 0) (2, 4) (4, 8) (8, 16) (10, 20) (14, 16) 
4 (1, 2) (11, 13) 

BH 58.11 Facet 25 16 6 (0, 0) (4, 8) (6, 12) (12, 24) (14, 28) (18, 24) 
BH 141.11 Facet 21 17 6 (0, 0) (2, 4) (4, 8) (10, 20) (12, 24) 

5 (4, 20) 
4 (12,0) 

Rule 4. Crystals of the dendritic type arise for Or( l ,  0) 
at maxima of a not further specified potential, whereas 
an orbit of minima yields a crystal form of the facet 
type. In the dendritic case, the basic structural sites are at 
intersection points and at the end of dendritic branches. 
In the facet-type case, these sites appear as internal dots 
or pores. The intemal line patterns can be modeled by 
connecting a selection of orbit points. 

Rule 5. The morphological importance of a basic 
structural site increases with increasing hole multiplicity. 

Rule 6. One can distinguish between homogeneous 
and inhomogeneous crystal growth forms. The homo- 
geneous forms are classified by a set of symmetry- 
equivalent lattice planes. The inhomogeneous forms are 
characterized by a set of symmetry-equivalent lattice 
points. 

Snow crystals of the dentritic and of the facet type are 
examples of inhomogeneous growth forms, whereas the 
columnar snow crystals (not considered in this paper) 
are expected to have homogeneous growth forms. 

These rules have an indicative value allowing, in a 
number of cases, a symmetry interpretation to be given 
of the morphology of snow crystals that goes beyond the 
Euclidean point symmetry. No attempt has been made 
to estimate for how many of the more than 2000 snow 
crystals of the Bentley-Humphreys collection the present 
approach is valid, but certainly for many more samples 
than the few ones selected here. 

5. C o n c l u d i n g  remarks  

The present approach explains, up to a certain degree, 
the geometry of snow crystals but not, however, the 
physics involved. The morphological interpretation of 
all the snow crystals considered is based on the fit- 
ting to the structure of two points only, the origin 
and one orbit or hole point of always the same set 
of admissible points. The deep meaning of the non- 
Euclidean symmetries for a Euclidean object, which 

is to express relevant Euclidean properties not due to 
Euclidean symmetries, gives the direction along which 
an interplay with physical laws can occur. A preliminary 
investigation has already demonstrated the possibility of 
interpreting some accidental degeneracy in energy band- 
structure calculations of crystals of the wurtzite structure 
type, on the basis of a multimetrical space group leaving 
the crystal structure invariant (Janner & Nusimovici, 
1994). 

The scaling properties observed in snow crystals are 
similar to those derived for Wyckoff positions in multi- 
metrical space groups (Janner, 1995a). The positions 
for a given Wyckoff letter are not scaling invariant but 
there are families of Wyckoff positions in mutual scaling 
behavior. Here also, one orbit is not scaling invariant but 
gives rise to holes belonging to different orbits that are 
at mutually scaled positions. 

A P P E N D I X  A 

The point group K = 6(4)m expressed with respect to 
the hexagonal basis a t = (1, 0) and a 2 = ( -  1/2, 31/2/2) 
is a subgroup of Gl(2, ;~), the group of integral two- 
dimensional matrices with determinant + 1. The corre- 
sponding proper subgroups are 6(4) and Sl(2, Z) -- F, 
respectively. The modular group F is generated by 
the two matrices [see Apostol (1976) and Schoeneberg 
(1974) for details]: 

T = ( 0  1)1 and 

whereas 6(4) is generated by 

R ( a ) =  1 0 

The set of matrices 

(0  i ) ( 1 6 )  
S =  0 ' 

and L ( a ) = ( ~  1 )  1 " (17) 

( ~  fir) °f F with /3 = 0 m ° d 3  

forms a subgroup F°(3) of index 4 in F, with coset 
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decomposition 

Y=//°(3)[11 + T+ T-' + S]. (18) 

Proposition 1. The point group 6(4) = (R, L), ex- 
pressed with respect to the basis c~ -- a l, c 2 = a z - a l 
is F°(3).  

Proof" The group F°(3) is generated by T' = S-ITS  
and V 2 = S -1VeS with 

T,__ (~ 0 )  , (~ 1 )  
1 and V 2 = :~ . (19) 

[See (Apostol, 1976, p. 79) using Fo(3 ) = S-1F°(3)S.] 
One then verifies the relations: 

R(c) = TR(a)T-1=-V~,  

L(c) = TL(a)T- '  = - V ~ ( T ' ) - '  
(20) 

Corollary. The group 6(4) is isomorphic to a subgroup 
of index 4 in F and the group K -- 6(4)m is isomorphic 
to a subgroup of index 4 in Gl(2, 7_). When referred to 
the hexagonal basis, K(a) has the coset decomposition: 

G/(2, 7Z)= K(a) In + T+ T - '  + T - 'S ] .  (21) 

The fundamental region of 6(4)/{-t-11}, considered as 
the group of fractional linear transformations acting on 
the extended upper half complex plane, is the union of 
the fundamental region I of the modular group and the 
corresponding images by T, T- l  and T - IS  (Fig. 18). 

Proposition 2. The hexagonal lattice points (m, n) 
of the two orbits 06(4) (1, 1) and 06(4) (1, 0) satisfy the 

/T 

-1.0 0.0 1.0 
Fig. 18. Fundamental region (indicated by heavy lines) of the multi- 

metrical hexagonal point group 6(4) acting as a group of fractional 
linear transformations on the upper half complex plane. The fun- 
damental region I of the modular group is indicated together with 
the images of I obtained from the coset representatives T, T- l and 
T-IS. 

condition g.c.d.(m, n) = 1. The congruence 2m - n = 
0mod  3 characterizes the points allowed for 06(4~(1 , 1) 
and forbidden for O6(4)(1 , 0). 

Proof" A point (m, n) of the hexagonal lattice (referred 
to the basis a), when expressed in the basis c, yields: 
(m, n) = (m+n, n),.. The image of (p, q)c by an element 
of F°(3)  is: 

( ~  3/3 + n 6 ) ( P )  = (( tp+3[3q (m  n 

so that m = (o~ - 7)P + (3/3 - 6)q and n = 7P + 6q. 
Accordingly, 2 m -  n = 2o~p mod 3. The orbit of the point 
(1, 0) by F splits into the orbit of (0, 1 ),. -- (1, 1 ) and of 
(1,0)c = (1, 0), respectively. In the first case, p = 0 so 
that the congruence 2 m -  n = 0 mod 3 allows the points 
for the first orbit and forbids those of the second orbit. 
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C. Beeli for information on snow crystals observed by 
scanning electron microscopy (Wergin, Rango & Erbe, 
1995); to J. Mennicke for a kind invitation to Bielefeld, 
where I learned properties of indefinite integral quadratic 
forms, and to H. Helling of the same Mathematical 
Institute for indicating the relation between the groups 
F°(3)  and 6(4) of Proposition 1. The encouragements of 
Annalisa Fasolino and the stimulating discussions with 
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